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When a body of fluid with a vertical salinity and temperature gradient is bounded 
by a sloping boundary, convective instabilities are often observed. These can occur 
if the fluid is subjected to heating or the addition of solute at  the boundary, or if the 
boundary is an insulator. These instabilities often take the form of long thin 
convection cells that are almost horizontal. We present a linear stability analysis of 
the background states associated with these different boundary conditions and 
derive criteria for their stability in terms of one non-dimensional parameter, &. This 
parameter is related to the Rayleigh number and is a generalization of the similar 
parameter found by Kerr (1989) in his study of heating a salinity gradient from a 
vertical boundary. This analysis uses a quasi-static assumption that is valid when 
the vertical lengthscales of the instabilities are less than the horizontal lengthscales. 

1. Introduction 
When a body of fluid has a vertical density gradient due to either a vertical 

temperature or salinity gradient, or a combination of the two, and has lateral 
temperature and salinity gradients, but no horizontal density gradient, instabilities 
are often observed. It can be shown that if an infinite body of fluid has temperature 
and salinity gradients that are uniform in every direction then the presence of 
horizontal compositional gradients always leads to instabilities. This holds for 
different models of the heat and salt fluxes such as salt fingers (Stern 1967), eddy 
fluxes (McDougall 1985) and molecular diffusivities (Holyer 1983), although the 
models with the fluxes dominated by salt fingers and eddy fluxes also require that the 
vertical gradients have destabilizing salinity gradients. However, when the lateral 
gradients are bounded in the horizontal direction the fluid may or may not be subject 
to instabilities. Such localized horizontal gradients that have been examined 
theoretically fall into three broad classes : (i) instabilities between parallel walls 
(Thorpe, Hutt & Soulsby 1969; Hart 1971; Paliwal & Chen 1980; Thangam, Zebib 
& Chen 1981), (ii) localized linear horizontal gradients in infinite fluids (Niino 1986, 
for the case where the fluxes are dominated by salt fingers) and (iii) localized 
horizontal gradients near a single boundary (Kerr 1989, for the case of the heating 
of a semi-infinite salinity gradient from a single vertical sidewall). The object of the 
present work is to consider some instabilities that lie in this third class. The 
instabilities examined here are those that occur at a single sloping wall that bounds 
a body of fluid which has linear vertical temperature and salinity gradients away 
from the wall. Some examples of this class of instability were observed experimentally 
by Linden & Weber (1977). They investigated the effect of inserting a sloping 
boundary into water with vertical sugar and salinity gradients. They found that in 
some cases instabilities occurred at  the boundary, taking the form of nearly 
horizontal, flat convection cells. Although publications concerning double diffusion 



334 0. S.  Kerr 

are usually couched in terms of heat and salt, the theory only requires two 
independent components that affect the density and which have differing 
diffusivities. By convention the component with the higher diffusivity is referred to 
as the heat and the component with the lower diffusivity as the salt. Hence for the 
case of sugar and salt the sugar corresponds to  the salt and the salt corresponds to 
the heat. The convention is adhered to here. The presence of the sloping boundary 
with no-flux conditions for the sugar and salt leads to  a background state with a 
growing region of localized sugar and salt gradients which have, to leading order, 
compensating effects on the density (Linden & Weber 1977). It is this rcgion that 
may sustain instabilities. Another related class of instabilities occurs when, instead 
of an insulating boundary with a no-flux condition on the heat and salt, the 
boundary is heated or is the source of a flux of salt. Examples of this type of 
instability were found experimentally by Chen & Skok (1974) who heated a sloping 
boundary to a body of water with a vertical salinity gradient. Again there is a 
growing region near the wall where there are compensating horizontal temperature 
and salinity gradients. 

One application of this analysis is to salt-gradient solar ponds where large pools of 
water with a stabilizing vertical salinity gradient are used to collect and store solar 
energy. This results in the water in the ponds having both strong vertical salinity and 
strong temperature gradients, although stably stratified. The walls of these solar 
ponds are usually sloping. In addition the walls of the solar ponds may undergo 
heating due to incident solar radiation. These instabilities could also be relevant to 
magma chambers where the hot stratified magma is retained by non-vertical walls. 
It is the instabilities that arise from the two possible sets of boundary conditions, 
insulating boundarics or heated boundaries, that  are examined in this paper. Since 
we will allow arbitrary slope we will include in these situations the case of heating a 
combined salinity and temperature gradient from a vertical sidewall. The purpose of 
this work is to establish when instabilities should be observed and allow the 
prediction of instabilities in a variety of situations such as the experiments of Linden 
& Weber, or cases where there is a sloping boundary to  a body of fluid with vertical 
temperature and salinity gradients such as in salt-gradient solar ponds. In  $2 we set 
out the basic background states associated with sloping boundaries with either no- 
flux conditions for both the heat and salt or for the case where a temperature and 
salinity difference is imposed a t  the wall. In  $3 we present a linear stability analysis 
of these background states. It is shown that for the case of no-flux boundary 
conditions the fluid should always become unstable, and a possible explanation is 
given as to why instabilities were not always observed by Linden & Weber. The 
conditions under which instabilities will occur for the case of imposed temperature 
and salinity differences are also examined in this section. In $4 we look a t  the 
influence on the onset of instability of some of the terms in the governing equations 
that were neglected in the previous section. The leading-order stability of $3 is 
determined only by the horizontal temperature and salinity profiles. In  $4 the first 
direct effect of the slope angle is determined. In $5 there is a discussion of some of 
the implications of this work. 

Throughout this paper i t  is assumed that we are looking a t  the case where the 
salinity gradient is stabilizing. This conforms with most of the reported experiments, 
and the motivating physical problems. This means that the situations where there is 
a destabilizing salinity gradient but a stabilizing temperature gradient are not 
Considered. Such a situation is prone to  salt fingering and so the fluxes of heat and 
salt would tend to be dominated by these salt fingers and not the molecular 
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diffusivities assumed here. This is the case in some of the experiments of Linden & 
Weber. 

2. Background state 
When a sloping boundary which is both an insulator and is impermeable to salt is 

inserted into a body of fluid with uniform vertical temperature gradient, E ,  and 
salinity gradient, S,, the isotherms and isopycnals must meet the boundary a t  right 
angles. Either gradient in isolation would induce a steady along-wall current 
(Phillips 1970; Wunsch 1970). However, with the differing diffusivities of salt and 
heat it is not possible for a steady-state boundary layer to exist (Linden & Weber 
1977). Instead a flow ensues which consists of a thin steady boundary layer 
comprising of an along-wall current with associated temperature and salinity 
variations, and a thickening region outside this layer where the evolving temperature 
and salinity perturbations have a balancing effect on the density. We model the fluid 
as being incompressible and satisfying the Boussinesq approximation, and with a 
linear equation of state, satisfying the governing equations 

au 1 
g + u - V u  = --Vp+g(aT-/3S)z"+uV2u, 

Po 

aT 
-+u .VT = K ~ V ~ T ,  

(2.1 a )  

(2.1 b)  
at 

as 
- + U - Q s  at = K ~ V ~ S ,  ( 2 . l c )  

v.u = 0, 
where the density, p,  is given by 

(2 .1d)  

Here u is the kinematic viscosity, g the acceleration due to gravity, KT the diffusivity 
of heat, K~ the diffusivity of salt, a the coefficient of thermal expansion and p is the 
density change due to a unit change in the salinity. 

The large-time asymptotic behaviour of the along-wall velocity, and the 
background temperature and salinity a time t after the introduction of the sloping 
boundary are found by the use of Laplace transforms (Linden & Weber 1977), to give 
at leading order 

,. ' f ( 1 - h )  
+2<cote- KT M eCMT sin Mv,  (2.3 a )  

1 -7h 

2 ( 1 - ~ ) ( ~ , t ) t  
[ ( I - h ) ( 1 - ~ h ) ] 3  

T =  q+zq+qcose ierfc ($43) 
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FIQURE 1. Configuration diagram 

and 

where 

a q  2(1--7)(~,t)i B =  s , + ~ ~ z + - c o s e  ierfc ($47) P [(1 - A )  (1 -7h)lT 

l - h  
l -Th 

+sZ cos e- M-' ePMq cosMq, (2 .3~)  

(2.4a, b)  

?ere z is the vertical coordinate, 7 is the perpendicular distance from the boundary, 
4 the unit vector along the slope, and B the angle between the boundary and the 
horizontal. This configuration is shown in figure 1. The other parameters that appear 
in this expression are the salt/heat diffusivity ratio 7 = KS/KT and h = ae/J3gz. The 
latter is the ratio of the contribution to the vertical density gradient of the vertical 
temperature and salinity gradients. The function ierfc is the first integral of the 
complementary error function. 

Instead of having no-flux conditions at the boundary we can consider the case 
where the body of fluid is subjected to heating and/or addition of solute at  the 
boundary. We will restrict ourselves to the cases where the addition of heat and/or 
salt is done in such a way that the difference between the temperature and/or solute 
concentration at  the wall differs by a constant amount from the far-field values at  the 
same height. This restriction ensures that the background flow is uniform along the 
wall. If only heat or salt is added we will assume that the boundary is insulating to 
the other component. These are idealizations which can be applicable, at least 
locally, to real situations. 

As in the case of heating a pure salinity gradient from a vertical sidewall (Kerr 
1989, hereinafter referred to as I), having differences of salinity or temperature that 
are imposed at some time and are subsequently constant is unrealistic in as much as 
this cannot happen in practice. It would also violate some aspects of the quasi-static 
assumptions that will be introduced later. In reality one would expect that the 
temperature and/or salinity at  the wall would evolve to  the fixed level steadily and 
that the fluid would initially be stable, but would become unstable at  some later time 
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when the quasi-static assumptions are valid (see I). However, all the different 
possible forms of increasing the wall temperature and/or salinity to a fixed level will 
induce evolving horizontal temperature and salinity gradients in the bulk of the fluid 
that tend to those found by instantaneously heating the wall temperature and/or 
salinity, and as such we will use these induced temperature and salinity gradients as 
representative in much of the analysis relating to the heating or addition of salt at 
sloping boundaries. For the case where the temperature at  the wall is increased by 
AT and the salinity by A S  the leading-order large-time behaviour is again found by 
Laplace transforms. The along-wall velocity, and the background temperature and 
salinity are found to be 

+ 6 cosec e A7(PAS-aAT) WK,  e-M''sinM7, ( 2 . 5 ~ )  
aAT( 1 - A7) 

erfc (Mq) +A7(/3AS-aAT) e-Mq cosM7, (2 .5b)  
aAT - A7/3AS T =  T,+zg+ 

a(1-7h) a(1--7) 
and 

erfc ($47) + e-Mv cosMq, ( 2 . 5 ~ )  
aAT - A7/3AS s= S,+Zs,+ 

PCl-74 A 1  --A71 

where A and M are defined as before. The function erfc is the complementary error 
function. 

If, instead of having fixed temperature and salinity differences, we have a fixed 
temperature difference and a no-flux condition on the Salinity then the leading-order 
large-time along-wall velocity will be similar to the above, but with the application 
of a temperature difference AT at the wall and an effective salinity difference of 
aAT//3. The terms corresponding to the boundary layer of thickness M-' will be 
proportional to t-i at leading order. 

3. Stability analysis 
In  this section we perform a linear stability analysis of the background state found 

in the previous section in a similar fashion to the analysis of I in the investigation of 
the stability of salinity gradients heated from a single vertical sidewall. In  this 
analysis we will make several assumptions. The first is that the instabilities are 
driven by the temperature and salinity gradients in the region of the background 
state that has the temperature and salinity perturbations evolving with a lengthscale 
growing as ti. If the instabilities are driven by the boundary layer of thickness M-l 
then it would be expected that the instabilities would appear when the two 
lengthscales separate. However, this happens on a typical timescale of order a few 
seconds whilst the instabilities may take a much longer time to appear. The second, 
and crucial, assumptions is a quasi-static assumption: we assume that in this 
stability analysis we can, at least to a first approximation, ignore the time 
dependency of the external evolving layer. The justification for this is that the 
instabilities that are observed usually take the form of long thin almost horizontal 
convection cells. After the onset of instability the growth rate of these convection 
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cells scales with the diffusion time of heat across the height of the cells, while the 
evolving background state grows with a timescale of the order of the diffusion time 
along the length of these cells. Hence, for long, thin, almost horizontal cells the 
timescale for their growth is much less than the timescale inherent in the evolution 
of the background. For further discussion see I. 

With these assumptions the linearized equations of motion for perturbations to the 
background state are 

with the stream function defined by 

(3.1 a )  

(3.1 b)  

(3.lc) 

(3.1 d) 

We can non-dimensionalize these equations with respect to the following quantities : 

T with respect to A T * ,  (3.2a) 

S with respect to aAT*//3,  (3.2b) 

1 - 7 A  i ( K  t*)i 
x with respect to L = - T -  - ( A  sin O)-l ,  

( I - A )  sine 

( l - T ) a A T *  
z with respect to H = 

(1  - 7 A )  ( - /?ATz)  ' 

( 3 . 2 ~ )  

(3.2d) 

t with respect to H2/K, ,  (3.2e) 

$ with respect to LK,/H. (3.2.f) 

The horizontal coordinate x is non-dimensionalized with respect to L,  the horizontal 
extent of this outer layer. The vertical coordinate has a different lengthscale, H ,  in 
its non-dimensionalization and in our analysis we assume that H < L. The 
temperature scale used is A T * ,  the temperature perturbation a t  the inside of the 
evolving outer boundary layer of the background state. For the case of no-flux 
conditions for both heat and salt this is given by 

2(1-7) 
A T *  = 

[( 1 - A )  (1 -7A) l i  

For the case of imposed temperature and salinity differences it is given by 

aAT- AT/?AS 
a(1-7A) ' 

A T *  = 

(3.3) 

(3.4) 
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For the case of an imposed temperature difference, but no salt flux through the 
boundary, this term would just be the imposed temperature difference. 

The timescale t* is as yet unspecified. We will anticipate the results of this analysis 
by choosing for this the time at the onset of instability. 

Before writing down the non-dimensional equations for the development of 
perturbations to these background states it is convenient to change the coordinate 
system to one in which the vertical coordinate is unchanged, but the horizontal 
coordinate measures the horizontal distance from the sloping wall to the point of 
interest. Because of the form that the instabilities take these are a natural choice of 
coordinates, however they are non-orthogonal. 

The linearized non-dimensional governing equations are 

where 

(3 .5a)  

(3.5b) 

(3.5c) 

(3 .5d)  

Here f'(2) is the non-dimensional horizontal temperature and salinity gradient. The 
other non-dimensionalized variables in (3.5) are denoted by tildes. We drop these 
tildes hereafter. The advection terms due to the background Aow are omitted for the 
sake of clarity. They are of order S2 (see below) and play no part in the subsequent 
analysis. The non-dimensional number Q is given by 

(1 - 7 )  gaAT*H5 
= V K ~  L2 

(3.6)  

and is related to a Rayleigh number, but takes into account the effect of the vertical 
density gradient in determining the aspect ratio of the observed instabilities (see I). 
For the case of no-flux boundary conditions for both salt and heat Q takes the form 

, (3.7) 
64As(1 - ~ ) l ~ g ( ~ ~ t * ) ~ (  -/3RZ) cos68sin2 8 

(1  -h)'(1 -7h)g7t3VKs 
Q =  

while 6, the ratio between the vertical lengthscale and the horizontal lengthscale is 
given by 

H A(l -~ )~s in2O 
L (1 - ~ h ) ~ 7 t t  * 

& = - = -  (3 .8)  

The requirement that S is small will be satisfied when the ratio of the temperature 
gradient to the salinity gradient, A,  is small. From (3.8) it can be seen that this 
parameter is also small when A is very large. However, the large - A  cases correspond 
to situations where the vertical temperature gradient dominates the vertical density 
gradient. In these cases the theory presented here predicts the onset of instabilities 
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FIGURE 2. Marginal stability curves for a thermally insulating sloping wall that is impermeable to 
salt for u = 7 and 7 = &, showing (a) Q ( b )  the corresponding values of w as functions of m. In each 
case curves are shown for h = - 1, -+, 0, + and 1 .  

for low values of t* .  However, the assumption that the background state is well 
described by the large-time asymptotics is not then valid. Consideration of these 
cases is outside the scope of this paper. 

For the case of fixed imposed temperature and salinity differences Q takes the form 

(1-7)6(1-h)g(aAT-h7hS)6sin28 
( 1  - T A ) ~ ~ v K ,  K~ t*( -PSz)' Q =  (3.9) 

Since none of the coefficients of (3.5) depend on z or t we can look for solutions that 
are proportional to exp {i(mz + wt)} .  Neglecting all terms multiplied by S we can then 
reduce these equations to the second-order ordinary differential equation for $ : 

im3( 1 - ~ h )  ( f  '(x) $)' 
(io + m2) - A(iw + 7m2) 

(1 -7h) m2(iw + crm') (iw + 7m2) (io + m2) 
[(iw+m2)-h(iw+~m2)] a7Q 

- $ = 0. yr + 
(3.10) 

This equation further reduces to  (3.19) of I in the case h = 0. Note that by our choices 
of the definitions of H ,  L and Q we no longer have any explicit dependency on the 
slope angle 8. The results that follow are applicable to  slopes of all angles. 

The boundary conditions are that $ vanishes a t  the wall (correct to  leading order) 
and tends to zero as x tends to  infinity. Non-trivial solutions to this eigenvalue 
problem were found using standard numerical techniques. The far-field boundary 
condition was modelled by imposing an appropriate radiation condition to allow for 
the internal waves generated by the translating instabilities. I n  this way we can find, 
say, the value of Q and the corresponding value of w for marginal stability for a given 
value of m. By varying m the marginal stability curve can be found for any given set 
of values for c, 7 and A. The results of this stability analysis will be discussed 
separately for the different cases of temperature and wall boundary conditions. 

3.1. No-jux conditions for heat and salt 

The marginal stability curves for c = 7 and 7 = &,, the approximate values for heat 
and common salt in water, are shown in figure 2 for several values of h between - 1 
and 1. From this we can see that in the case of marginal stability the curves for the 
values of Q ,  and the corresponding values of w ,  vary by relatively small amounts for 
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FIQURE 3. Values of (a) Q ,  (a) o, and (c) m corresponding to marginal stability for values of A 
between - 1 and 1 for the case u = 7 and T = &, corresponding approximately to the values for heat 
and salt in water. 

A 

significant changes in the buoyancy ratio A. The values of Q, w and m corresponding 
to marginal stability as functions of h are shown in figure 3. Again there is a relatively 
small variation in these values with respect to the variation in A. This lack of 
variation is a result of the definitions of the vertical lengthscale, H ,  and of Q. When 
h < 0 both the vertical temperature and salinity gradients are stabilizing, and when 
h = - 1 they make the same contribution to the overall density gradient. When h > 
1 the temperature gradient is destabilizing. In the limit A = 1 there is no net vertical 
density gradient. 

Note that by neglecting the O(6) terms we cannot apply a no-slip condition at the 
wall. Similarly the no-flux conditions for the perturbations to the temperature and 
salinity are lost. If the analysis is extended into the thin steady-state boundary layer 
and the various regions are matched then these effects can be accounted for. These 
have an O(6) effect on the solution and the values of the parameters for marginal 
stability. This extension is considered, along with the other previously ignored O(6) 
terms in $4. 

In  the case of a sloping boundary inserted in water with vertical salinity and sugar 
gradients a further approximation can be made. In this case a x 560 and 7 x 4 and 
so we can make a ‘large u’ approximation, taking 

(iw + am2) x am2. (3.11) 

This enables us to simplify (3.10), obtaining 

im3( 1 --7h) (f’(x) $)’ (1 - 7 A )  m4(iw +7m2) (iw +m2) 
$ = 0. (3.12) (iw+m2)-h(iw+7m2)- [(iw+m2)-A(iw+~m2)]~Q 

y+ 
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FIGURE 4. Values of (a) Q ,  ( b )  w ,  and (c) m corresponding to marginal stability for values of h 
between - 1 and 1 for the case of T = f using the large-a approximation. 

h 

Again, the boundary conditions are 

$ ( O ) = O  and Ilr(z)+O as x-too. (3.13) 

The critical values of Q for values of h between - 1 and + 1 can be found for T = t ,  
the approximate value for the sugarlsalt system investigated by Linden & Weber 
(1977). These are shown in figure 4(a), with the corresponding values of m and w 
shown in figures 4 ( b )  and 4(c) respectively. This time there is a more marked 
variation in these quantities as h varies, especially for h near to  1. 

The form taken by these instabilities is shown in figure 5 for the case of a 45" slope 
with h = -0.3, u = 7 and T = &,. These show the essentially horizontal nature of the 
disturbances. For smaller h these disturbances are even thinner. It should be noted, 
however, that this linear analysis by its nature predicts counter-rotating convection 
cells. It has been shown for other related cases of double-diffusive instabilities such 
as lateral heating of a salinity gradient in a vertical slot (Hart 1973), and the heating 
of a salinity gradient from a vertical sidewall (Kerr 1990) that the analogous 
instabilities are subcritical. Also, the sloping-wall experiments reveal corotating 
convection cells and so it is expected that the counter-rotating cells of this linear 
analysis will also be subcritical. Hence the nonlinear convection cells that are 
observed may not correspond closely to  these linear instabilities in form. 

From (3.7) i t  can be seen that Q contains a t *2 term, with all the other terms fixed 
at the time of the introduction of the sloping barrier. For any set of parameters the 
value of Q increases with time, and will eventually reach its critical value. From this 
we see that the fluid should always become unstable provided the assumptions made 
in this analysis are valid. The expected time for the onset of instabilities can be 
calculated from the critical value of Q, and the expected vertical lengthscales of the 
observed disturbances a t  the onset of instability. The times taken for the onset of 
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FIGURE 5. (a) Streamlines, and (b )  contours of constant temperature perturbation and (c) salinity 
perturbation for the onset of instability in a heahal t  system with an insulating boundary for x 
between 0 and 6. In this case u = 7 and r = & for a slope of angle 45' and A = -0.3. The intervals 
between the contours are (a) A$ = 0.1, (b )  AT = 0.01, and (c) AS = 0.25. The negative contours are. 
dashed. 

instability, and their vertical lengthscales, in the sugar/salt system are shown in 
figure 6. It can be seen that the timescale involved increases rapidly as h + 0. Linden 
& Weber failed to observe any instabilities in their experiments when A < 0.7. It can 
be seen from this graph that this corresponds to a timescale of around five hours. 
They reported that after this time there were other disturbances that appeared due 
either to surface effects or to the ends of the slope which disrupted the basic 
background state. At this point their experiments were terminated. 

This theory is valid in the limit of small 6 which would correspond to small A. 
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FIGURE 6. ( a )  Time taken, t * ,  for the onset of instabilities and ( b )  their height h = 2rrH/m, for an 
insulating slope of 45' in a salt/sugar system (with T = + using the large-u approximation) for h 
between - 1 and 1 .  

FIGURE 7. ( a )  Time taken, t * ,  for the onset of instabilities and ( b )  their height, 2rrH/m, for a 
slope of 45" for a heat/salt system (with 7 = & and CT = 7)  for A between - 1 and 1.  

However, for a reasonably small value of A, say h = kO.1, the onset of instabilities 
would be expected after almost a decade, and so it is not surprising that no such 
instabilities were observed. However, for small A, Q can be increased, and the onset 
of instability hastened, by having a stronger salinity stratification (often im- 
practical), setting the slope angle to 8 = 30°, or using a fluid and salt whose product 
of Prandtl number with salt/heat diffusivity ratio is small. For example sugar/salt 
has UT x 200 while heat/salt has UT x 0.9. Since the value of Q corresponding to the 
onset of instability is relatively insensitive to changes in the Prandtl number and the 
salt/heat diffusivity ratio we can see that for the same values of A ,  buoyancy 
frequency etc. the time taken for the onset instability would be approximately 45 
times shorter for a heat/salt experiment than for a salt/sugar experiment. This is 
shown by examination of the time to the onset of instability for water with vertical 
temperature and salinity gradients (figure 7) .  From this we can see that using 
temperature and salt would give a more practical timescale. Alternatively, by using 
a solute with a much lower diffusivity than sugar as the basic stratifying component 
the product UT, and hence the time for the onset of instability, would be much 
reduced. 

By the choice of the vertical lengthscale H a n d  the definition of Q the solutions are 
well behaved as h passes through zero. If h were zero this would correspond to  the 
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reduced. 

By the choice of the vertical lengthscale H a n d  the definition of Q the solutions are 
well behaved as h passes through zero. If h were zero this would correspond to  the 
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FIGURE 6. ( a )  Time taken, t * ,  for the onset of instabilities and ( b )  their height h = 2rrH/m, for an 
insulating slope of 45' in a salt/sugar system (with T = + using the large-u approximation) for h 
between - 1 and 1 .  

However, for a reasonably small value of A, say h = kO.1, the onset of instabilities 
would be expected after almost a decade, and so it is not surprising that no such 
instabilities were observed. However, for small A, Q can be increased, and the onset 
of instability hastened, by having a stronger salinity stratification (often im- 
practical), setting the slope angle to 8 = 30°, or using a fluid and salt whose product 
of Prandtl number with salt/heat diffusivity ratio is small. For example sugar/salt 
has UT x 200 while heat/salt has UT x 0.9. Since the value of Q corresponding to the 
onset of instability is relatively insensitive to changes in the Prandtl number and the 
salt/heat diffusivity ratio we can see that for the same values of A ,  buoyancy 
frequency etc. the time taken for the onset instability would be approximately 45 
times shorter for a heat/salt experiment than for a salt/sugar experiment. This is 
shown by examination of the time to the onset of instability for water with vertical 
temperature and salinity gradients (figure 7) .  From this we can see that using 
temperature and salt would give a more practical timescale. Alternatively, by using 
a solute with a much lower diffusivity than sugar as the basic stratifying component 
the product UT, and hence the time for the onset of instability, would be much 
reduced. 

By the choice of the vertical lengthscale H a n d  the definition of Q the solutions are 
well behaved as h passes through zero. If h were zero this would correspond to  the 
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FIGURE 8. Marginal stability curves for an impulsively heated and salted sloping wall for (T = 7 and 
7 = &, showing (a )  Q and ( b )  the corresponding values of w as functions of m. In each case curves 
areshownforA=-1, - t ,O , tand  1.  

case where no temperature and salinity gradients were present away from the wall. 
With no such gradients this case would be stable to linear perturbations of the form 
that we have been seeking. The finite value of Q for marginal instability does not 
contradict this. There is a factor of h6 in the numerator of the definition of Q, so if 
h = 0 then Q = 0. As A + O  this result tells us that, since the critical value of Q 
remains finite, so t* must increase as and so the expected time for onset of 
instabilities becomes infinite. Also, by the inclusion of the (1 - 7 )  factors in the 
definitions of Q and H ,  the singularity in the equations is removed in the limit T +  

1.  This limit is equivalent to the case where there is only one stratifying component, 
and corresponds to the Phillips and Wunsch flow. The background perturbation is 
confined to the steady inner boundary layer. Again there is no contradiction that a 
finite value of Q is predicted for instability as there is a (1 -7)12 term in the definition 
of Q which would imply that as T +  1 the time taken before the onset, of instability 
increases as ( 1 - T)+ .  

3.2. Imposed temperature and salinity difference 
When there is an imposed lateral temperature and salinity difference we again obtain 
the equation for the stream function (3.10). However, there is a different temperature 
profile. For the case of instantaneously imposed temperature and salinity differences, 
with the associated error function profiles, we can obtain the critical values of Q as 
functions of m and the corresponding values of w as before. These are shown in figure 
8 for the case u = 7 and T = & for values of h between - 1 and 1.  These results are 
similar to those obtained for the insulating impermeable boundary considered earlier 
and again show little variation for different values of A. 

The formulation of this problem in terms of the instantaneous increase in the wall 
temperature leads to the same problems as discussed in I for the instantaneous 
heating of a salinity gradient from a vertical sidewall. If the wall temperature and 
salinity were raised instantaneously to some level and kept there then the resulting 
value of Q would be proportional to t - l ,  initially unbounded and decaying to zero. 
The value of 6 would behave similarly. This initially infinite Q would imply 
instantaneous instability if the quasi-static assumption were not broken along with 
the assumption of small 6. However, for more realistic imposed increases in the wall 
temperature and salinity there would be an initial almost linear rise in the wall 
temperature and salinity, indicating that the instantaneous values of Q would be 
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FIQURE 9. Values of (a )  Q, (b)  w ,  and (c) m corresponding to marginal stability for Chen et al. (1971) 
style heating for values of A between - 1 and 1 for the u = 7 and 7 = &, along with the values of 
( d )  st corresponding to these points of marginal stability. 

proportional to  t5 .  The fluid would then start in a stable regime and may become 
unstable later. Reasonable results may be obtained if the error-function temperature 
profile is used to  find the critical values of Q and m and these are then compared to 
the instantaneous value of Q found when AT *'It is maximized. However, this does 
not take into account the changing shape of the temperature and salinity profiles as 
they evolve from those where AT and AS are both proportional to t to those where 
the error function profile is assumed. Instead we will use more realistic wall 
temperatures and salinities (cf. Chen, Briggs & Wirtz 1971) such as 

Twall = AT( 1 - e-st), ( 3 . 1 4 ~ )  

and Swall = AS( 1 - e-st), (3.14b) 

where s is the rate of evolution of the wall temperature and salinity to  their final 
levels. For the sake of simplicity we have assumed that the wall temperature and wall 
salinity cvolvc in the same way over the same timescale. The evolving temperature 
and salinity profiles outside the thin wall boundary layers are then 

-e-st Re(exp (i(stA2r2)i) erfc [flq+i(st)i]}),  (3.15b) 

We can now calculate the instantaneous values of Qcrit, the value of Q for marginal 
stability, and the instantaneous values of Q as functions of time. If the curves 
intersect then the fluid will be unstable to infinitesimal perturbations. Marginal 
stability will correspond to the case where the two curves touch tangentially (see I) .  
The values of st a t  which these curves touch for values of A between - 1 and 1 are 
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shown in figure 9 ( d )  along with the corresponding values of Q and the corresponding 
values of m and w for the case u = 7 and 7 = &j (figures 9a-c). The values of m and 
w presented were found using the final wall temperature and salinity in their scalings, 
not the instantaneous values. From these results it can be seen that over the range 
of h shown the value of Qcrit and the corresponding values of m vary by a very small 
amount, whilst w varies by a larger, but still small, amount. The variation in st 
corresponding to marginal stability is small over the range of h shown. 

4. Second-order effects 
The terms neglected by assuming that 6 x 0 in the analysis of the previous section 

were at most O(6) .  The terms that remained were those that would be present for the 
analysis of the instabilities at  a vertical wall. The influence of the boundary slope was 
purely in the setting up of the background state. It is the neglected terms that 
convey the direct effect of the slope of the boundary on the instabilities. A t  this order 
the effects of the thin boundary layer that did not appear in the previous analysis, 
and the effect of the neglected horizontal diffusion now appear. These include, for 
example, the influence of having a no-slip condition at the wall. These effects give 
O(6) corrections to the critical values of Q found for marginal stability. Unlike I, 
where the first corrections to Q were 0(a2),  these corrections are of lower order than 
the O(ZJ~) uncertainty inherent in the quasi-static assumption. In this case the O(6) 
corrections are of physical significance. However, since the form of this perturbation 
is dependent on the precise boundary conditions and the exact form of the wall 
heating imposed we will restrict ourselves to the case with the no-flux conditions for 
both heat and salt. Results obtained for wall heatinglsalting would not have any 
degree of generality, and so are not included. 

This analysis follows the higher-order analysis of $5 of I closely, and much of the 
detail is omitted here. 

By ignoring the effects of the O(6) terms in the leading-order equations we were 
unable to satisfy the no-slip boundary condition. In the investigation to this order 
we have to take this effect into account. To do this we must perform a boundary- 
layer analysis which involves using matched asymptotics between the outer layer 
that we have been concerned with in $3 and two thinner layers of relative thickness 
O(6) and O(d). This analysis yields the relationship between the leading-order 
solution in the outer layer as it tends towards the boundary and the higher-order 
approximations. It gives an O(6) correction to II. at the wall end of the outer layer. 
This, combined with the O(6) terms in (3.5), leads to expanding the stream function 
and the temperature and salinity perturbations in the outer layer as asymptotic 
series in 6. This we also do with Q and w ,  giving 

a, 

(II.W> W4>wJ4) = c 6’(II.,i(.,, T , ( X ) , S , ( X ) ) ?  
’-0 

(4.1 a )  

and (4.1 b)  

These expansions were substituted into the governing equations and the terms of 
similar order were collected. The O( 1)  equations are the leading-order equations 
given by (3.5) with the higher-order terms ignored. These equations have the 
solutions found in the previous section, made under the assumption that all O(6) 
terms were negligible. Hence Qo and wo will correspond to the critical values found 
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there. Again we look for solutions that are proportional to  exp {i(mz + wt) } .  From the 
O(6) terms we have 

-- UTQ, a q  as, -2w, m cot 8 0 +  a@ 4uim3 cot 8 0 ,  ( 4 . 2 ~ )  
(1-J ax ax) ax ax 

(iw,+m2) -im$,f'(x)- (1 - 7 )  A- Wl-  - -iw, T,+2imcot 8--, aTl (4.26) ax ax 
W I  - 38, 
ax ax (iw, +7m2) S, - im$,f'(x) - (1 - 7 )  -- - io, So + 27im cot 8-. ( 4 . 2 ~ )  

These equations do not in general have a solution. To find the values of Q, and w, for 
which solutions exist we apply a solvability condition analogous to that used in the 
O(S2) analysis of I. We multiply (4.2) by the respective conjugates of the adjoints of 
the O( 1)  equations, $, p and A!?, and integrate the sum of these expressions from x = 
0 to  03. In this way we obtain, after some manipulation, the relationship 

(I  -7)(iwo+m2) (iw0+7m2) $,(0)[~?3(0)+3(0)1 

- - ~ ( i o , + a m 2 ) ( i w , + m 2 ) ( i w , + ~ m 2 )  J;$@,ds 

QO r 

+ 2im cot 8 m2[3a7m4 - 2 i ( u ~  + u + 7 )  W ,  m2 - (a+ 7 + 1) w;] 1; $@; dx i 
(4.3) 

The analysis of the thin boundary layers yields the relationship between @, and k1 
in the outer layer 

i7m 
M (iw, +7m2) (iw, +m2)  (1 - 7 A )  

(iw, + m2) - A(iw, + 7m2) 
$1(0) = -- cot e @;(o). (4.4) 

A similar analysis for the case of a heated boundary would also yield an expression 
a t  this order, again with a cot 8 factor. Since this term vanishes when the wall is 
vertical this result, which gives an O(6) perturbation a t  leading order, is consistent 
with the vertical-sidewall analysis of I which gave an O ( P )  perturbation a t  leading 
order. 

When (4.3) and (4.4) are combined along with the relationship between the 
adjoin ts  

(4.5) 

we obtain an expression involving only $,(x) and its adjoint $(x). Taking real and 
imaginary parts of this expression yields two simultaneous equations for Q, and w,. 
The terms in these expressions can be calculated numerically, and the solutions 

a7Q~ $(o) = ( - iw, + m2) ~ ( 0 )  = - ( - io, + 7m2) A!?(o) 
(1 - 7 )  
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FIGURE 10. The O(6) corrections (a) Q1 and (b) w1 for values of A between - 1 and 1 for the case 
of u = 7 and 7 = 9. 
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FIGURE 11. The corrected values of (a) the critical value of Q ,  (b) the time to the onset of instability, 
t * ,  and (c) the height of the instability, h = 2xH/rn, for a thermally insulating slope with angle 4 5 O  
which is impermeable to salt. These are calculated for A between - 1 and 1 for Q = 7 and 7 = 9. 
The uncorrected values are shown as the dashed lines. 

found. The results for the case u = 7 and 7 = $ are shown in figure 10. These values 
can then be used to find the corrected values of Qcrit and t * ,  with allowance taken for 
the angle of the slope. Some results are shown in figure 11 for a slope with angle 
8 = 45'. For an overhanging slope, with +x < 8 < x, the signs of Q, and w, both change 
owing to the change in sign of the cot 8 terms in (4.3) and (4.4). There is also a change 
in the sign of 6 due to the sin28 term in (3.8) and so the net result is that the 
modification to the stability is the same for a slope of angle 8 and a slope of angle 
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FIGURE 13. The corrected values of (a) the critical value of Q ,  (b) the time to the onset of instability, 
t * ,  and ( c )  the height of the instability, h = 2xH/m, for a slope with angle 45" which is impermeable 
to both sugar and salt. These are calculated for A between - 1 and 1 for 7 = using the large-a 
approximation. The uncorrected values are shown as the dashed lines. 

7c - 0.  This implies that if a thin sloping boundary were inserted into a tank then the 
instabilities should form on the underside a t  the same time as the top. 

The large-a approximation used to derive (3.12) can also be applied to the 
determination of Q1 and w1 in appropriate cases. Results using this approximation 
are shown in figure 12 for 7 = $! the approximate value for the ratio of the 
diffusivities of sugar and salt. Again using this approximation, the modified values 
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of the critical value of Q and the time taken for the onset of instability are shown in 
figure 13 for 7 = 4. 

5. Discussion 
In this paper it has been shown that when a fluid with vertical temperature and 

salinity gradients, with the salinity gradient dominating, is in contact with a sloping 
boundary then an unsteady background state ensues. This background state has an 
evolving outer layer of thickness proportional to d where the temperature and 
salinity perturbations from the basic stratification have counter-balancing effects on 
the density. We have shown that the stability, under certain approximations, is 
governed by the non-dimensional number 

( 1-7) gaAT *H 
'= V K ~ L ~  ' 

where AT* is the temperature perturbation at the inside of this evolving outer 
layer, L the horizontal extent of this layer, and H the vertical lengthscale 
(l-~)aAT*[(l-~h)(-~~z)]. When Q exceeds a number of order lo5 the fluid 
becomes unstable to thin almost horizontal convection cells. These results hold when 
both 6 = H / L  and h are small. This holds for both the case h > 0, when the 
background vertical temperature is destabilizing, and for h < 0, when both the 
background vertical temperature and salinity gradients are stabilizing. 

These conditions were not both satisfied in the experiments of Chen & Skok (1974). 
They heated a pure salinity gradient from a sloping boundary, so h = 0. However, 
owing to the relatively short timescale for the heating up of their wall ( - 2 minutes) 
6 was not small. Their experiment no. 1 has S x 0.6, and the rest have S > 0.7. 
Although both experiments nos. 1 and 2 were subcritical, the value of Q for the 
second of these was about four times greater than that predicted for marginal 
stability. Comparison with the experimental results of Tsinober & Tanny (1986) for 
heating a salinity gradient from a single sidewall (see I) gives two possible reasons for 
this. The first is that for these larger values of 6 the salinity gradients do seem to be 
significantly more stable than the linear analysis with the quasi-static assumption 
predicts. Secondly, the large variations in the salinity concentration in the tank 
mean that the linearized equation of state assumed, (2.2), does not hdld globally. It 
was found in I that the local values of Q calculated aibng the wall could vary by a 
factor of 10 between the top of the tank and the bottom of the tank. This leads to 
instabilities appearing lower down in the etperimental tahk first and then apparently 
moving upwards. Such behaviour was alsu observed by Chen & Skok. This problem 
can be overcome by using a local stability critekion such as used by Tsinober & Tanny 
in their experiments. Similarly the restilts of Linden & Weber cannot provide 
confirmation of the predictions of this theory. They were unable to address the small- 
h limit in their study owing to the breakdown of the background state which arose 
from other effects associated with the finite extent of their tank. This occurred before 
the instabilities could appear. 

How may these results be applied to more practical considerations? In salt- 
gradient solar ponds (see Schladow & Imberger 1987) the values of h lie between 
about $ and &. If the walls were perfect insulators then the onset of instabilities would 
be expected to occur somewhere between several hours to over a week. However, this 
may be unimportant compared to the relatively fast heating of the sloping walls of 
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the solar ponds by direct sunlight. This causes the wall temperature to rise by a few 
degrees in around half an hour. In  this case, for typical temperature and salinity 
gradients we would expect instability to occur almost universally with a vertical 
lengthscale of around a centimetre. As Schladow & Imberger reported, there has been 
little direct observation of solar ponds a t  sufficient resolution to  detect these 
instabilities. However, their numerical simulations of solar ponds showed that the 
inclusion of effects of double-diffusive instabilities a t  the boundaries was needed in 
order to  successfully model the behaviour of solar ponds. It is hoped that present 
work will improve the understanding of how these mechanisms operate. 

The other physical problem which motivated this work was the possible initiation 
of convective instabilities in the magma at the sloping boundaries of magma 
chambers. Direct application of the theory is hindered by lack of accurate knowledge 
of the exact parameters that are appropriate, combined with a far more complicated 
geometry than the idealized problems studied. However, by use of sensible guesses 
we can hope to get an idea of the scales of the problem, and to  find out whether 
sidewall instabilities driven by double-diffusive effects could be responsible for some 
of the convection and mixing that occurs in magma chambers. The compositional 
variation and the chemistry of the magma are more complicated than can be allowed 
for in this analysis, so the guesses must include simplifying assumptions. It was 
assumed that the magma chamber was lo3 m high with a temperature of 800 "C a t  
the top and of 1200 "C a t  the bottom. The enclosed magma was stratified, with the 
density varying from 2.2 x lo3 kg m-3 at  the top to 2.7 x lo3 kg omp3 at  the bottom. 
This density gradient would be almost entirely due to compositional gradients, 
giving a value of pRz z -2 x m-l. The coefficient of thermal expansion was 
taken to be a = C-l, giving h = 2 x lo-,. Since this value is small we could 
expect the analysis in this paper to be appropriate. The diffusivity of temperature 
was taken to be K~ = 8 x lo-' m2 s-l. It was further assumed that the variation in the 
density between the magma a t  the base of the chamber and the top is due principally 
to variations in the SiO, concentration. This has a diffusivity K = iO-14-10-16 m2 s-l. 
The other component of the magma which could have a bearing on the dynamics of 
the magma is the water content. The variation in water concentration may be great 
a t  the walls where the melting chamber walls will contain no water compared to a 
2 4 %  water concentration in the bulk magma. Thus at the boundaries we could 
consider the possibility of convection due to  either a heat/SiO,, or a water/SiO, 
system. In either case the effect of the water concentration is important as it has a 
strong effect on the viscosity of the magma. The diffusivity of water was taken to be 
K = 10-l' m2 s-'. The dynamic viscosity can vary considerably, with the viscosity of 
the basalt influx at the base of the chamber being as low as 1 0 2 P a s  while the 
viscosity of the magma a t  the top of the chamber could vary vetween 10l1 Pa  s and 
lo5 Pa s depending on the water content. 

We now come to the problem of which set of boundary conditions are the most 
appropriate to the magma chamber walls. We can consider the effect of an insulating 
boundary on the magma. This is not entirely appropriate for a heat/SiO, system as 
the diffusivity of heat in the magma is comparable with the diffusivity of heat in the 
surrounding rocks. However, it could be appropriate for a water/SiO, system. With 
the walls of the magma chamber being cooled and melting i t  could also be 
appropriate to use the analysis of the effect of increasing the wall temperature and 
solute concentration by a fixed amount at the wall. This has the difficulty that the 
appropriate concentrations and compositional differences that should be used are not 
clear, nor is the appropriate timescale for the heating up of the wall. With these 
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difficulties in mind we will make some guesses that seem reasonable in order to get 
an idea of the likely scales of the non-dimensional parameters. 

With the above assumptions, we can calculate the time taken for the onset of 
instability for an insulating boundary with a slope of 45". For magma with a 
viscosity of lo7 Pa s instability will occur after around 200 years. With each increase 
in the viscosity by a factor of 100 this time increases by a factor of 10. For less viscous 
magmas this time would be diminished. These shorter times are plausible and so this 
should be considered as a possible driving mechanism for convection in magma 
chambers containing less viscid magmas. However, if we consider the case of no-flux 
conditions on both water and SiO, we find that the time needed for the onset of 
instability can be of order lo9 years. This is obviously too long and so can be 
discounted as a mechanism for instability. 

The second kind of instability, that with fixed temperature and compositional 
differences imposed between the bulk of the magma and the boundary, has to be 
treated differently. The appropriate differences in temperature and composition are 
not known with any precision, nor do we have an exact form of their temporal 
evolution. However, we can make estimates of the typicai temperature and 
compositional differences that may be expected and find from these a timescale for 
marginal stability. If the differences are imposed on a shorter timescale then we 
would expect instability to appear. For an imposed temperature difference and a no- 
flux condition on the salinity we find that a typical timescale for the onset of 
instability is 

We have assumed here that since h x 0.02 and that r is small we can ignore the terms 
involving these quantities. In a similar way the corresponding lengthscale is 
( K ~  t*)f/sin 0. If instabilities were to exist then they would be expected to be on a 
lengthscale similar to this, if not shorter. This expression (5.2) can be applied to a 
variety of cases. For a relatively inviscid magma with viscosity 102Pas,  with a 
temperature difference of only 1 "C imposed a t  a boundary of slope 45", then 
instabilities would be observed if the heating (or cooling) time was less than about 
40 days. The corresponding lengthscale is about 2i m. If the times were much less 
than 40 days the driving force of the instabilities would be far from marginal 
stability, and the convection could be expected to be vigorous. For greater 
temperature differences this time is greatly increased, as is the lengthscale, as the 
critical time scales as AT6. 

For more viscous magmas the critical time is reduced dramatically. For a magma 
with viscosity lo' Pa s the timescale for a 1 "C temperature difference is less than 40 s 
(with a lengthscale around 7 mm) and so it is unlikely that instabilities due to the 
mechanisms described in this paper would result. The temperature difference would 
have to be of order 7 "C for the timescale to be as long as 50 days. The corresponding 
lengthscale is again about 2im. For the most viscous magmas, with viscosity 
10" Pa s, the timescale is again reduced, implying that the magma is more likely to 
remain stable. Even so, for larger, but still plausible, temperature differences such as 
50 "C the critical timescale is nearly 2 years. In this case the lengthscale is just under 
10 m. Provided that the timescale for the cooling of the sidewall of a magma chamber 
is less than 2 years and a temperature difference of at  least 50 "C is involved then 
double-diffusive convection at  the boundaries would always be expected. From this 
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we can see that double-diffusive convection from a sidewall could play a role in the 
dynamics of a broad range of magma chambers. 

The instabilities described in this paper could also be important in many other 
situations that have not been discussed, such as icebergs melting into seas with both 
salinity and temperature gradients or solidifying alloys. This analysis only predicts 
the onset of instability and not necessarily the form the instabilities take or how they 
behave. If, for example, the fluid has a destabilizing temperature gradient then the 
bulk of the fluid could be unstable to nonlinear subcritical instabilities (Proctor 
1981). The instabilities initiated at a boundary could in such circumstances trigger 
nonlinear instabilities in the bulk of the fluid, and the convection cells a t  the walls 
could then penetrate deep into the bulk of the fluid. However, for the case when both 
temperature and salinity gradients are stabilizing this would not be the case. 

I would like to thank Professor R. S. J. Sparks for providing me with the data for 
magma contained in magma chambers. 
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